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SUMMARY

A study is made of the emission, absorption, and decay of radiant
energy by high-temperature air behind a one-dimensional shock wave in
hypersonic flow. The analysis 1s developed for the case of gray radiation
in local thermodynamic equilibrium. A relatively simple solution of the
integro-differential equations has been obtained for the magnitude of
the radiant fluxes in the upstream and downstream directions. In this
solution, the temperature distribution is not computed initially, but is
computed subsequent to the determination of the optical thickness.
Numerical results are presented for the distribution of upstream and
downstream radiation heat flux for pressures between 1 and 102 atmospheres,
and for temperatures between lO,OOOO K and 15,0000 K. The flight condi~
tions are outlined under which the decay and absorption of radiant energy
become important in the gas cap of in entry vehicle.
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INTRODUCTION

The study of heat transfer by radiation in a gaseous media is of
considerable interest in various scientific problems, and of particular
concern to the heat protection of space vehicles during atmosphere entry
at velocities above the escape velocity for the earth (refs. 1-6). At
these high velocities, and at the modestly high densities encountered
behind strong shock waves, the absorption as well as emission of radiant
energy by the shock layer can be a significant part of the energy crossing
the shock wave. For such conditions the influence of absorption must be
included in an analysis of this problem (refs. 7, 8). A general formula-
tion of the equations for heat transfer by radiation and absorption has
been presented by Goulard (ref. 9). The fundamentals of the basic transfer
theory behind their formulation may be found in various bocks on astro-
physics (e.g., refs. 10, 11). A number of papers have been published in
which calculations of the radiative heat transfer from the hot-gas cap to
a reentry vehicle are made under the simplifying assumptions of constant
temperature and negligible effects of radiation absorption (refs. 1, 2, 3).
Recently, a very general form of the basic radiation equations has been
presented by Viskanta (ref. 7).



In the present report, the radiation heat flux behind strong normal
shock waves wherein radiation absorption and decay of radiation emission
are important has been calculated under the followlng assumptions:

1. Gray radiation with local thermodynamic equilibrium of the
radiation and the gas properties behind the shock wave.

2. DNegligible absorption upstream of the shock wave of the radiation
from the region downstream of the shock wave.

3. Transparent shock front (zero reflection of radiation passing
upstream through shock) .

L, Black body wall at a temperature very small compared to the gas
temperature.

5. Negligible heat transfer by thermal conduction and convection
compared to radiation.

6. Radiant heat flux at the wall in a real flow with shock detach-
ment distance, L, is the same as that in an idealized one-dimensional
hypersonic flow wherein all downstream radiation is absorbed at a
distance L downstream of the shock wave.

NOTATTION

The notation adopted is that of Goulard (ref. 9).

Ay By Bo, }- constants in equation (A5)

By, C, D, T

a, b, c constants in equation (A2)

an coefficient of expansion in equation (A1)
B, Planck's function (eq. (2¢))

c velocity of light

Cp specific heat at constant pressure

d constant in equation (21)
En(t), Ei(t) exponential integral (eq. (2a))
Et radiation intensity, UioT*

F, Fo, F1, Fo,| dimensionless flux functions (egs. (13), (12), (15a),
Fy, Fs, By JL (150), (13¢), (13a), (13v))



Labsg
Lgec

1, myn

ds

Ly

function in equations (A27a) and (A274d)

mean slope of F

modification factor (eq. (A23))

Planck's constant or enthalpy

Boltzmann's constant or heat conduction coefficient
shock standoff distance

combined characteristic length

characteristic absorption length in equation (24b)

characteristic decay length in equation (2kha)

constants (eq. (Al))
pressure
net radiant heat flux (eq. (5))

radiative heat flux in upstream direction at shock location

(eq. (6a))
radiative heat flux in downstream direction at wall (eg. (6b))
reflectivity
integration variable
absolute temperature
absolute temperature of air at wall
absolute temperature behind normal shock wave
ratio of T to Tg
velocity behind normal shock
flight velocity
horizontal coordinate
parameter (eq. (B2))

emissivity or perturbation function (eq. (17))
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factors in equation (A25e)

constants (eq. (21))

- q
heat-transfer coefficient, ———
3
(1/2)p, ¥,
frequency
Stefan-Boltzmann constant

density

absorption coefficient

oo}
Jf By dv
Q
jee]
JF B, dv
¢

Planck mean absorption coefficient,

optical thickness (eq. (2b))

optical thickness for x = L

Subscripts

conduction

gas at the wall
radiation

shock wave

total

wall

frequency

behind shock
upstream direction
downstream direction

free stream



Superscripts

! first derivative with respect to optical thickness

" second derivative with respect to optical thickness
ANALYSIS

In this section the basic integral equations for the radiative heat
fluxes traveling in the upstream and downstream directions are first pre-
sented for the case of a nongray gas. These equations are then special-
ized for the particular case of gray radiation and for the particular
boundary conditions of the present problem. By combining these equations
with the equations describing the fluld dynamics of the gas flow behind
shock waves, the final equations to be solved are obtained. The
mathematical techniques employed for their solution are then described.

Equations for One-Dimensional Nongray Radiative Heat Flux

The basic equations for monochromatic radiation of frequency Vv
between two parallel boundaries are as follows (e.g., refs. 9 and 11) ¢

For the radiative flux in the downstream direction toward the wall
Ty
a (1) = zﬁf B, (+)Ea(T, - t)at + 2q_(0)Ea(Ty) (1)
o

For the radiative flux in the upstream direction toward the shock wave

Ty
0 (1)) = eﬂl VB () Fa(t - T,)at + 20 (T EalTyy - ) (2)

where the exponential functions are defined by the integral

1
E (t) = f gt 2e b/ 53¢, Eq(t) = -Ey(-t) (22)

O

and the optical path length T, 1is defined through the equation

X
T, = f w, dx'  or At = p, dx (20)
o]



and the Planck function B, 1is defined through the equation

2h V3
B =50 — 2
V(T) c2 Jhv/kT _ 4 (2¢)

In equations (1) and (2) the integrals represent fluxes from the gas
layer itself and the additional terms are fluxes from the boundaries.
The radiative flux 1s integrated over all frequencies as follows:

For the downstream direction

1l

0 () = [ alra (3)

For the upstream direction

a6 = [ T () ()

The net radiation flux at any given x position is defined as

alx) = q,(x) - q_(x) (5)

Basic Equations for Radiative Flux
Specialized to Present Problem

Under the assumption made for the present problem of gray radiation,
the absorption coefficient ., 1is independent of frequency v and so
is the optical thickness T,. Also, as is sketched in figure 1, the
shock front is assumed to be transparent (€5 = rg = 0) and the wall is
assumed to be an opagque black surface (ew =1, vy = 0) with the wall
temperature Ty << Tz. For these conditions equations (1), (2), and (5)
reduce to

a(t) = fTW 20T%*Es(t - T)dt - fT 20T Eo(T - t)at (6)
T @]

which at the shock wave becomes

1 =040 = [ " oatma(t)at (6a)
Q



and at the wall becomes

o)
=
il
1
0
_‘
5
il

TW "
-\/ﬂ 20T Ex(T, - t)dt (6b)
O

where the temperature T is a function of the independent variable T,
and T, 1is the optical thickness at the wall.

Since dEs(T) = -E1(T)dT, differentiation of equation (6) yields

TW \
dgq(T) = <}ucT4 + 20T *Eq, |t - Tldt ) dT (7
[ etnt - ri)

and the thermal conditions at the shock wave and wall are, respectively,

o
0
Il
Nl
Py
@)
SN’
1l

" Tw "
_LoTo® + o0 T*E, (t)dt (Ta)
o]

o)
2—
il
FQ-
P
-
=
—
|

T
W
= “boTo* + b/\ 20T4E1(TW - t)dt (7o)
o
where the prime denotes the derivative with respect to optical thickness.

Combination of Equations for Gas Flow and Radiative Flux

In a one-dimensional steady hypersonic flow such as is being
considered, the three basic flow equations are:

continuity
a(pVv) = 0 (8)
momentum
dP + pV av = 0 (9)
energy

oV a <p +-% v%) - dg, - dgg = O (10)



or

g A
pV‘Qp +.% V%> - q, -k Sg = const. (10a)

For a shock wave moving at hypersonic velocity relative to the wndisturbed
air, we have the following approximations:

(a) ho >>‘% Vo2

An important consequence of approximation (b) is that the flow behind the
hypersonic normal shock wave is essentially a constant pressure flow.
Furthermore, at the very high velocity considered hercin, the transport
of energy by thermal conduction is disregarded compared to the transport
by radiation, sc that we have the additional approximation

oT
(c) q. >k =

The justification for this assumption will be discussed later in an
appendix.

If the sbove approximations are applied and equation (7) is
substituted for dq,., equation (10) can be written as

T >
-0V, dh = -dq,. = <§0T4 - \jp 20T*E, |t - Tld?) ar (11)
o]

The left side of this equation involves the aerothermodynamic variables
which may be represented by the dimensionless function Fg' defined as

PV dhn

Fo'(P2, he; h) = -
© ’ ’ 20T24 dr

(11a)

Similarly, the right side, which involves the radiation-absorption
variables, 1s represented by the dimensionless function F!

. 1 dq .= T _y
F' (T, T) = - — = 2T - T'EplT - tldt (11b)
2UT2 aT o

where T is the ratio T/Ts.



At the upstream boundary of the radiation region (adjacent to the
shock wave) this last equation becomes

-

W o

Fg' = F'(Ty, 0) = 2 - f T*E, (t)dt (11c)
O

and at the downstream boundary (adjacent to the wall) it becomes

T _
O

The integral forms of these equations are

p V
Fo(Pz, hz; h) = =22 (hy - h) (12)
20T
and
0) - T
7y, ) = 20 = al
20T
Ty _ T _ Ty _
= f T*Es(t)at + f T*Eo(T - t)dt - f TE-(t - T)dt
o o) T
(13)
From equations (6a) and (6b) the upstream value of the flux is
T —,
Py = f T*Fo(t)dt (13a)
o
and the downstream value is
Tw _
Py = f T*Ep (T, - t)at (13b)
o]

The combined or total radiative flux for a given shock standoff distance
is

F, = F, + F, (13c)
In solving the basic equation (11), it is convenient to recast it

into a dimensionless form. By dividing both sides of equation (11) by
the local temperature T4, there results
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~p V_dh Tw ma
TP °0 <2 -f I (2) E1lt - T|dt> ar (1)
DgT A T

which, with the definitions,

ho
dh
F1(P5, ho; h) =p V (15a)
1( 2, hz; h) P mké: ST
and
T Ty T4(‘t) N
Fo(T,, T) = f ar! <2 -f o Eilt - 7! ld‘l:) (15b)
v o] o
becomes

F1(Pz, ha; h) = Fo(T,, T) (15)

The derivative of the Fo function at the shock wave (T = 0), and at
the wall (T = T,), follow from equation (14).

.

Fog' = Fo'(Ty, 0) = 2 -f M T*(t)EL(t)at (16a)
o]
1 T —y

Foy' =Fa'(7,, Ty) = 2 - Tz f T*(t)Ey (T, - t)dt (16b)
€ 0

These derivatives represent dimensionless forms of the radiant heat flux
passing upstream at the shock, and downstream at the wall, respectively.

OUTLINE OF METHOD OF SOLUTION

Inasmuch as the basic equation (11) is a nonlinear integro-
differential equation, a method of solution incorporating successive
iterations of approximate solutions is employed. The full development
of the analytical method is rather detailed, and is presented in
appendix A. In the present section, only the salient or novel features
of the method are outlined, and the first approximation, the second
approximation, and the conversion from optical to physical coordinates,
are briefly described.
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First Approximation in Terms of Optical Thickness

A perturbation function e(TW, T) is introduced for the temperature
in terms of the following expression:

THt) | 3 4, THH)

t - . . e
=t T er (¢ -+

or

B (4
I—A&%l=eT(T)+ ~l+l+q;ip—'(t-"r)+...

The function €(T,, 7) is then defined as

T

1 W —4 TW
s T*(t)Eq |t - Tldt = [1 + e(7y, T)]f Eilt - Tlat (17)
O @]

For the case of either small variation of temperature, or of weak
gbsorption,

e(ty, T) ~ O

and the integrals appearing in equation (15b) can be evaluated in terms
of exponential integral functions

Fa(mu, T) = % - Ba(Ty) - Bs(7) + Ba(my -7) (18)

The exponential integral E5(T) is further approximated by the exponential
function e~2T/2 wyhich, at T = O, has the same value as E5(0), and the
same derivative as Ez'(0); the resulting expression is then multiplied
by the normalizing factor [1 - 2Ea(T,) 1/2(1 - e~2™) in order for the
over-all approximation for Fz to reduce to the correct value at T = Ty.
Thus, as a first approximation, e(ty;, T) = 0, and the function Fz is

Fo(ty, ™) = == 2Ba(Ty) () . 2Ty - o=2T 4 e-2(Tu-T)] (19)

2(1 - e—sz)

This approximation provides a solution for the integrals on the right
side of equation (13).

A solution is also required for Fi, the integral term on the left
gside of eguation (15)., It is to be noted that the various terms in
equations (12) and (15a) are a function only of the thermodynamic



properties as given in figure 2 and are independent of the optical
thickness 7. Hence, the integrals of such terms can be readily evaluated
from the basic flow charts of various references (e.g., refs. 12, 13, 14,
and 15). Functions Fo and Fi1 have been evaluated in this manner and
the results are shown as figures 3 and 4. To determine the downstream
and upstream radiation fluxes F, and Fy the temperature as a function
of F3 1s expanded in polynomial series as

“fé _ 80’T23

=1 Fl + agFlZ + ¢ & . anFln (20)
poovoocpz

where an are constants to be determined. Equations for Fy and Fg
can be obtained from equations (l3a) and (le), respectively, after
equating F; to Fao.

Second Approximation for the Solution in
Terms of the Optical Thickness

For the second approximation, a modified form of the F, function
is employed

Fa(my, 1) = d[1 - 1™ . o7 o a{Tye=7), (21)

from which the slopes at both ends are obtained as

-ﬂsz)

[}

Fog! a(n, + nue (21a)

1’

Foy' = d(n,e 127V 4 1) (21b)

The values of the constants d, M., and N, are determined from an
iteration of the first approximation. It has been found expedient,
because of the singularity in F"(7y, T) at T = T, to introduce a mean

slope ﬁw' instead of Fou' 1in order to compensate for small but
sudden changes of temperature near the wall.

Conversion From Optical Thickness to Physical Dimensions

With the solution established in terms of optical thickness it is
a relatively simple matter to convert to the corresponding physical
coordinates. For strictly gray radiation the absorption coefficient 1
is constant, but for air radiation u varies; and hence some mean value
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should be used. The Planck mean [ is employed herein. From the
definition of optical thickness for gray gas (eq. (2b)), we have

from which it follows that

T
X = \]p ar (22)
o) M

In applying this equation to a flow with a shock detachment distance L,
the basic assumption (6) of the present paper is employed

L = xy (23)

Thermodynamic properties behind a normal shock are presented in figures 5
and 6, and corresponding values for the absorption coefficient [ are
computed from data in references 16 and 17 and presented in figure 7.

The variation of temperature over the distance x behind the shock wave
is obtained from equation (19) or (21) and the data of figure 3.

RESULTS AND DISCUSSION

Prior to the presentation of results from solutions of the integro-
differential equation for the radiative heat flux, several auxiliary
charts will be presented. Useful aerothermodynemic charts for applying
the present results to a given problem of atmosphere entry are presented
in figures 5 and 6; these give the values of temperature, pressure, and
density behind normal shock waves for various flight conditions. The
basic data for the equilibrium radiation intensity per unit volume are
given in figure 8; these data were obtained by combining the results of
references 16 and 17. For purposes of comparison, a summary plot of the
radiative heat transfer to a stagnation point of a hemisphere, as obtained
from the work of reference 3 for the case of no absorption, is presented
in figure 9. (It is noted that a correction factor of 1 to 0.8 for the
spherical segment of the gas cap as opposed to an infinite slab has been
included in the data of these figures.)

In order to delineate the flight conditions under which absorption
is important it is convenient to introduce the idea of a characteristic
length ILa. The relative magnitudes of L and of the shock standoff
distance L provide a convenient means of marking the boundaries of the
domains wherein the decay and the absorption of radiation are significant.
A characteristic decay length, Igee, 1s introduced as



1h

1 3
V_ h 5 PV,
Idec=p°_°°°i:2moo (2ha)
WioTs Et2

where Lj.. 1s the length required to lose all energy by radiation of
constant intensity behind a normal shock wave. A characteristic absorption
length, L.y,q, is defined as

Lopg = _21: (k)

and is the length required to reach the black body radiation limit.

At relatively high densities, Lgps << ILgec, S0 that absorption dominates
decay and L, ¥ Lgpg; but at relatively low densities, Ljec << Lgps S0
that decay dominates absorption and L, ¥ Ljee. By fairing between these
two characteristic lengths in intermediate regions, a single characteristic
length L, has been obtained for the entire flight domain. Curves of
combined characteristic lengths are presented in figure 10, If the shock
detachment distance L 1is such that

1
LSE Le (25)

then the nondecay-nonabsorption regime would be applicable and the radia-
tion heat flux would be that of an isothermal gas. At the opposite
extreme of very high pressures, namely, Po > 10° atm, where the absorption
is strong and the characteristic length L, 1s such that

1
Le <=5 L (26)

the radiation heat flux would be essentially that of black body radiation
at the local temperature (which would vary between the shock and the wall).

Before determining the degree of refinement required to estimate
accurately the radiative flux by the first approximation, the accuracy
of the second approximation is investigated., Temperature distributions
as determined by the second approximation and by equations (12) and (13)
are shown in figure 11, When the second approximation (continuous curved
line) is used as input into these equations, the sguare points are
obtained as the output. The physical condition presented in figure 11
is a typical case where radiation absorption, as well as the interdepend-
ence of the radiation term and the enthalpy term of the energy equation,
is important, As may be seen from the close agreement of curves and
points in figure 11, the results of the second approximation are very
accurate. Hence, the second approximation, which is an iterated solution
based upon the first approximation, may be considered as nearly exact.

The first approximation is less accurate than the second, but is
adequate for most conditions. Curves for the radiation heat flux
according to the first and second approximations are shown in figure 12.



15

The difference between the two approximations is less than 4 percent.

It should be noted that at either higher or lower pressures the radiation
fluxes, as calculated from the two approximations, will approach each
other even more closely, inasmuch as these conditions correspond to either
smaller temperature variations or to weaker absorption effects behind the
shock. The first approximation, which is rather simple to evaluate, is
therefore considered to be sufficiently accurate to estimate the radiative
heat transfer.

The principal results of this report are presented in figures 13
and 14. The radiative flux Fg at the shock wave and Fy at the wall
as determined from equations (13a2) and (13b) according to the first
approximation are plotted as functions of T, in figure 13. Figure 1h
shows a typical comparison of the radiation flux for the case wherein
absorption and decay are neglected with the case wherein both dbsorption
and decay are considered, The solid straight line represents the flux
with no absorption or decay, corresponding to a constant temperature
behind the shock. As T, increases, Fg and Fy curve away from this line
as a result of the decay phenomenon; these curves become a plateau as Ty
is increased further as a result of the absorption phenomenon. It is
noted that the flux at the wall, F,, for an optically thick layer is
larger than the local black body radiation at the wall, This is due to
the fact that the temperature gradient at the wall 1s negative, and the
gas temperature everywhere in the shock layer exceeds Tg. It is also
noted that the departure of the Fg curve from the Fy curve is a
manifestation of decay and absorption effects, inasmuch as Fy would
equal Fg if there were negligible decay Or no absorption. Since both
of these curves bend away from the straight line (representing no decay
or absorption) by a great amount, as well as deviate from each other by
a substantial amount, it follows that the effects of both decay of
radiation and absorption of radiation are important in this case.

The results in terms of the coefficient of heat transfer A and
shock detachment distance L are presented in figure 15, The definition
of the dimensionless heat-transfer coefficient is

q
A= ———
1 3
5 Poo’oo

A crossplot of the various calculations for the heat-transfer coefficient
at a given shock detachment distance is also presented in figure 16. It
is noted that in the lower right portion of each part of figure 16 where
To > 15,000O K (see fig. 6) the curves shown here have been extrapolated
by using the black body radiation limit as a guide.

From figure 16 several conclusions of practical interest may be
drawn. If attention is confined to the altitude range of severe heating
for shallow entry trajectorics of manned vehicles (50 to 80 km), it is



]
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seen that, for entry velocities of about 11 km/sec (corresponding to

entry upon return from the moon), neither decay nor absorption of radia-
tion would be important for L of 1 foot or less. At higher entry
velocities of about 15 km/sec (corresponding to entry upon return from a
short-time trajectory from Mars), decay of radiation would be important
but absorption would not. For objects such as large meteorites, however,
which enter at higher entry velocities and also at relatively steep angles,
the most severe heating occurs at altitudes of about 20 to 40 km, where
both decay and absorption are major factors in determining the radiative
heat flux to the body.

In regard to the limitations of the present calculations and to
their possible extensions the following cobservations are made:

(1) The calculations become questionable at very high velocities
where the gas cap temperature is so high that intense ultraviolet radia-
tion emitted upstream through the shock wave is absorbed by the oncoming
air, Under such conditions the absorption and re-emission upstream of
the shock wave would modify the results,

(2) The assumption of local aerothermal equilibrium behind the
shock wave 1s valid at the relatively high pressures and temperatures
where absorption is important, but it would not be valid at lower
densities where nonequilibrium phenomena have been demonstrated to be
important (see ref, 18).

(3) At temperatures other than those considered herein the transport
of heat by thermal conduction may be important. The results discussed in
appendix B show, however, that for the range of variables considered
herein, thermal conduction 1s small compared to radiation heat transfer.

(4) The accuracy of the gray gas approximation for air has not yet
been evaluated.

CONCLUDING REMARKS

Within the framework of the assumptions made, it is found that
rather simple calculations of both the radiative heat flux downstream +o
the wall, and of the radiative heat flux upstream from the gas behind a
normal shock wave, provide a satisfactory solution to the problem of a
nonisothermal, absorbing, emitting gas. It is noted that at very high
velocities and large shock detachment distances, the calculated radiative
heat flux, compared to that of the isothermal approximation, is much
lower when decay and/or absorption are considered. In general, the char-
acteristic length provides a good guide to the appropriate radiative
regime (isothermal, decay, or absorption) in which a given entry vehicle



operates. For manned vehicles entering along shallow trajectories at
twice the satellite velocity, for example, the effect of decay can be
significant, and for a large meteorite, or instrument-return vehicle,
entering along a steep trajectory, the effect of absorption can also
be significant.

Ames Research Center
National Aercnautics and Space Administration
Moffett Field, Calif., May 21, 1962
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APPENDIX A
METHOD OF SOLUTION
EVALUATION OF T 1IN TERMS OF THE FUNCTION Fi

One of the equations toc be solved for the radiative flux is
F1(P2, ha; h) = Fa(Ty,, T) (15)
From aerothermodynamic charts, such as presented in references 12,

14, or 15, equation (15a), the left hand side of equation (15), can be
evaluated for a constant pressure process,

ho T
dh ¢y dT
F1(Ps, he; h) = oV f = p V f 2 (15a)

The enthalpy at constant pressure as deduced from reference 15 is plotted
in figure 2 as a function of temperature. The variations in temperature
with Fi are shown in figure 3, These were obtained from the enthalpy
curves in figure 2 by approximating them by a third degree polynomial of
temperature over intervals of 1000° K.

From figure 3 T4/T24 = T*  can be readlly expressed 1in terms of F;.
N<
T = S ey (A1)

For the present work, N = 3 represents a sufficiently accurate approxi-
mation

Mo

ﬁé ag + aifFy + a2F12 + a3F13 (A)

H

where ap will be denoted as

ag = 1
=4 8 3
al:a:gT_ :--&
dFy [Fy1=0 pOOVDocp2
a2=b
8 = C
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Let Fy = Fo as given in equation (15), and Fp from equation (21) as
Fo = a[1 - M2 _ 7T e-ﬂz(Tw—T)], then (A2) becomes

1l

= “NoTy ~1T —~NoTar - - -
T4 = A - Bge Nz W + Bie N2 W, mr L 2n2Twe nT Be-an . Be_nz(TW_T)

-27n4T 2N Ty-T -3M,T ~ano Ty-T
N1 + Ce ﬂa( w-T) - De 1 + De Nz (Te=T)

+ Ce (A3)
where
L=my = "z
m= 29, - 7y (AL)
n="M, - 2n2
A= 1+ adf + bd?f% + cd®3f° W
By = 2bd® + 6cd®f
By, = 3cd3
B = ad + 2bd®f + 3cd®f= > (A5)
C = ba® + 3cd3f
D = ¢dS3
£=1- 2T
S
For nm, = My = 2 the following relations are used in equation (A3)
A - By, as A and. B -B;y as B (A6)

Equations (A3) to (A6) provide the evaluation of function T*.

Tn evaluating the radiative fluxes from equations (13a), (13v),
and (130), and the derivatives of the flux from equations (11c) and (114)
with equation (A3), many terms involving the integral of a product of
an exponential and an exponential integral function are encountered.
Such integrals have been evaluated from references 19 and 20.
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EVALUATION OF INTEGRALS INVOLVING Eo(T) AND E.(T)

1

Tw . Tw . -
/ e n'X-Ea('r)d'r f e (T, T)Eg('rw - T)dr
o o

F o (20 - el

+in(n + 1) -1 - Eo(n + l)Tw} (ATa)

1l

Tw . - Tw
f e (T T)Eg_(’l’)d‘l’ f e Trr}zg_('r,,, - T)dT
o}

o

1

= B+ nE() + =

=
N Tw

1l

[-in(n - 1) -1 + E(n - 1>Tw1} (A7)

T T
[T mamar = [V m(ne - mar = L - ma(r) (u7¢)

f e 1 El(T) daT
O

i
h
—]
B
[}
=
—
<
I
—
L
=
'_1
N
-
=
1
alt
ol
.‘

= (1 + ) B2+ )Ty - & Ba(r) ] (aBa)

T - _ Tw _
f e (T T)El(’r)d’r = f e T]TEl(frW - T)dT
O o]

L
]

1

[-e-nTWZn(n - 1) + e_nTWEi(n - 1)1y + Er(my) ]
(ABb)
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Ty Ty
JF Ei(1)ar = b/\ Ei(Ty - T)AT = 1 - Ex(Ty) (A8c)
o o]
The following relations are used:
if <1
-in(n - 1) + Ei(n - )7y = -1n(1 - q) - E2(2 - )7y
if n=1

-in(n - 1) + Ei{n - U)Ty =7 + In Ty

where 7 = Eulers constant (=0.57722).
For simplicity of calculations numerical values associated with

equations (A7a) to (A8c) have been prepared for 7 from 0.1 to 9.0
with 0.1 intervals.

FORMULATION OF F AND F' FUNCTION

Equations (13a), (b), and (c) upon the introduction of equation (A3)
and the integrals evaluated in the previous section become the following:

By employing the following symbolic notation for the integral evaluated
in equations (A7a) to (ATc)

(aT2) = (I) e.g., 1 =1 1in (ATa) = (I)y
(ATp) = (II) n =1 in (A7a) = (1)
(A7c) = (III) n=2n, in (A7) = (I1)F
1 =3n, in (A7a) = (1)3 etec.

then
A(III) - Bo(I)7 + Bal(D)p - (Dnl -BI(D)Z - (ID)3]

+ (D)5 + (D21 - dl(D)S - (IT)3] (A9)

)
5}
li

Py = A(III) -Bo(II); - Bal(ID)y - (ID)m] + BI(I)3 - (ID)1]

+ c(D)2 + (IDZ] + DI(D 3 - (1D 3] (A20)
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Ft=FS+FW
= 2A(IIT) - Bol(T)y + (ID)¢] + Bi{(Dp + (ID)p - [(Dn + (IDnl}
fCl(D2 + (102 + (D2 + (IDZ] - B{(DI+(ID1- (D)3 + ()21}

1
-+ (D3 - (D2 + (1051} (11)

Also, equations (1lc) and (d) with the symbolic notation
[1]

(A8b) = [I1]

il

(A8a)

(A8¢) = [I1I]
become
2 - <§[III] - BolTly + Bofl Iy - [I)n} - B{(T1F - (IT13}

+cftnly + (1132} - il 113 - [II]§£> (A12)

Fg!

]

F,' = JTe* - <§[III] - BolIIly - Baf(IIly - (ITlp}+B{lI]} - [II]i}

+ {112 + (1115} + {112 - [II]§}> (A13)

For the first approximation (n, = 1, = 2) Fg, Fy, and Fy with condi-
tion (AS) become

i
1l

¢ = A(III) - BI(D)1 - (ID)3] + cl(D% + (I1)F] - DI(T)T - (TI)3] (A1d)

|
e
1

= A(TIT) + B{(I)T -~ (II)7] + cl(DF + (x1)F] + DI(T) 3 - (ID)F] (Al5)

Fy

il

2a(1I1) + 2c[ (D)5 + (I1)%] (A16)
Also, Fg!' and Fy' can be written

F' = 2 - <5[III] - B{[1)y - (1113} + {115 + (1115}

Sp Tl - [mi}> (117)
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B o= OT% - <§[III] + B{lnl} - (1113 + cfrrig + (1113}

+Dﬂﬂ§-[1ﬂ§0 (A18)

By definition

Fog' = Fg! (A19)

2w T == I'w
Foy' = == Fy' (A20)
T
e

Fs Function for First Approximation

As a first approximation, e€(T, t) ~ O and Fz are readily evaluated
in terms of exponential integral functions

Fo(Ty, T) = % - Ea(Ty) - Ea(7) + Eg(my - 7) (18)

However, due to difficulties associated with evaluation of expressions,
Ty
n . . .
such as J[ Es Ty - T)Ez(7)dT, the function Ea(T) is further approxi-
0

-2T
mated by the simple exponential function e = /2 which, at T = 0, has
the same value as Es(O), and the same derivative as Eg'0); to compensate

-2T
for this approximation, a normalizing factor 1 - 2Ez(Ty)/2(1-e 2Ty 15
applied in order that FE(TW, Ty) reduce to the proper value of
1 - 2Es(Tw). The result for the first approximation is
1 - 2Ex(T -2 -2T -2(Ty-T
Fa(Ty, T) sl o | BT BT () (19)

2(1 - &™FTy
Modification Factor G(Ty) in Second Approximation

The method of determining the mean value of ﬁw’, mentioned earlier
in the outline of solution, is described in this section. The second
derivative of F(Ty, T) can be derived from equation (11b) as

1 _oams B_T- i =3 TW =
P'(1y, T) = 8T = + TEo(T - t)dt - T*Eo(t - T)dt
T o T (A21)
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Then
ST ™o,
Fg'" = 8 = - U/\ T*Eq(t)dt (A22a)
OT |1=0 o
_ ol W _
F," = 8T.° %% + k/h T*Eo(T, - t)dt (A22D)
T= TW o

From the above equations it is apparent that F" at both boundaries is
infinite, and these singularities (especially at T = TW) create an
infinite gradient of temperature, even though the change in T is very
small; equation (21b) remains finite at both ends. To compensate for
this effect, a modification factor G 1is introduced toc adjust F,' by
the relationship

Fo' = G(T) By’ (423)
The value of F' at T = 0,957y 1is found to be a good average value to
use instead of the actual value at the end. It can be obtained approxi-
mately as follows:
From equation (11b)
_ Ty _ _ T
F'(Ty, T) = 2T° - b/\ T*E, [T - t]dt ~ T4<? - &/ﬂ EqlT - tld?)
o o
or
F' (T, T) ~ THE2(T) + Ea(my - 7)1

then

ot = F'(Ty, 0.95Ty) _ T*(0.95Ty) [E2(0.957y) + Ep(0.057y)] (ach)
v F,' Te*(Bz(Ty) + 1]

where T(O.95TW) and Te are found from the first approximation, and
G(Ty) 1is limited by the inequality

G(ty,) > 1/2

To maintain some slope at the end, for example T, at ©, the mean value
of G(w) = 1/2 is used instead of G(») = 0. It was noted that the
slope around T = 0 was smooth enough that no significant correction was
reqguired.
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PROCEDURE FOR DETERMINING SECOND APPROXIMATION

The second approximation is obtained as follows:

Equations (A16), (A12), and (Al3), with the use of the first approximation
(eq. (19)), yield the following quantities:

Fy = Foy = FalTy, Ty) from figure 4
FS' > ng’ (A25a)

t

F,' > Fzy' = Fay' equations (423) and (A24)

Equations (21), (2la), and (21b) are then matched with the above condi-
tions in (A25a) to determine the constants d, np, and np. The following
outline illustrates the calculation procedure:

1 - 2Eg(Ty)
2(1 - e"anW)

(a) Assume 4 = as given at equation (19), and n, = 2

(b) Calculate 10, from equation (21b) as

Fogs! -4 T “NoT 5T
Mo = Fiy - Mi€ fa Y, and find e 2™ ond e 2w (A25D)

(¢) Calculate n, from equation (2la) as

Foal =TT =N+ T =N4T
25 e N2 ¥, and also e faTwr and n,e ot (A25c)

My = a 2

(d) Repeat (b) and (c) until 7, and np converge to two significant
1 2
figures
(e) Then compute a new d from

d = Fow (A253)
(2 - o"MaTw _ e'nzTW)

and repeat procedures (b) and (c) until d, 7, and np converge.

A set of constants in (A5) are then computed from d, 7n,, and 7, obtained
above, and new values of Ft, Fg', and Fy' are obtained from (A11), Al2),

and (A13).
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The entire above procedure is repeated until d, 71,, and n, coineide with
the previous iteration. It was found that PFg' and Fy' obtained from
the first approximation always gave sufficient convergence go that no
further iteration upon these values was necessary. Also, it was found
that the precise accuracy of these quantities was not so significant
compared with that of Fy.

When 1, and 7, are stable or given, d can be estimated from (A5) in
the following way: Let

e = A4 << L
d

Then differentiation of (A5) with respect to 4,
OA ~ (adf + 2bd2f2 + 3cd3f3)e'w
LBgy ~ (4bd® + 18cd®r) e’

(9ca®) e

5

(A25e)
OB ~ (ad + 4bd?f + 9cd3r2) ¢

AC ~ (2bd2 + 9cd3f) e!

LD ~ (3cd3)e! J

These values are substituted into equation (All) for an arbitrary
value of d near the original value, and corresponding values of Fy

are plotted against Fs (=Fy) in figure 4. Intersection of the plotted

curve with the original curve is the point where & 1is determined
from Fg .

EVALUATION OF RADIATIVE FLUXES FOR SPECIAL CASES

For the case of either a small or a large optical thickness, the
calculation of the radiative flux by the first approximation becomes
rather simple,

Ty <1

By use of approximation

Es(T) ~ % -7 (A26a)
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equation (18) becomes
1
Fo(Ty, 1) = 5 - Ba(my) = Ba(7) + Ba(my - 7) = 27 (A26b)
and it follows after Fp = o

T*

il

1 + alFl + 8,2F12 + a3F13 d+ 4 e

n

14 2a1T + o o » (A26ce)

then fluxes at both ends are

T, (1 - T)AT

Ty _
Fy = Fy = f T (T)dT =

@)

C%%

}_’

1

Tw 1
JF (1 + 2a1T)Ex(T)dT = 5 - Ea(Ty) - 231[‘TWE3(TW) - Ba(my) + g]
o

= T (A264)

This result clearly is the appropriate one for the case of either the
isothermal or the decay approximation.

Ty >> 1

In evaluation of the flux at the shock Fg, terms -Ez(Ty) + Es(Ty - T)
can be dropped from the function Fp since crossproducts of these terms
with exponential integral Eo(T) become negligible for Ty >> 1. Thus,
it follows after definition of F¥

(1) = & - Eq(7) (A27a)

that

&
0
Il

F*(Ty)
JF (1 + a1F% + agF*2 + agF¥*3 + . . .)dF¥
e}

1!

F(Ty) +% F*2(Ty) +% F*3(Ty) +—af F4() + .« o o (A27D)

As Eg(ty) = O

~ 1
Fg —«% + et é% as + é% ag + e o . (A27c)
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Similarly the term -Eg(7y) + Es(T) can be dropped from F, for
the flux at the wall Fy, and after definition of F, it follows

Fo(T) = % + By, - ) (A274)
1
Fy = J\ (L +aFy +agF,2 +aF,%+. . )AF,
Fy(0)
~ 23, 2 az 3 a3 4
= 1 - F(0) + = [1 - F,=(0)] + 5 [1-F°(0)] + T [1 - F2(0)]+. ..
(A27e)
Asymptotically
_ 1.3 e 15
Fy==+2a; + as + ag + « o . (a27f)
oo e Tt Ty 2Ty e
Then the total radiative flux Ft becomes
Fy = Fg + Fy
1 1 1
= l+=a3 +=8 += a3+ + o o AP
71 t382+ Y as (A2T7g)

Fluxes calculated by both equations (A27b) and (A2Te) provide a good and
quick estimate of an optically thick case for T+ > 1/2. Furthermore,

1t is noted that the expansion of equations (A27b) and (A27e) in terms

of equation (A26a) produced an identical result as equation (A26d) , which
is for the optically thin case. Thus, it is suggested that the above
equations may well be applicable for all Ty Within the limitation

of T* > 1/2.
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APPENDIX B

MACNITUDE OF CONDUCTION HEAT RELATIVE TO RADIANT HEAT

The magnitude of the conduction heat transfer in equation (10a) can
be estimated from equation (llc), with the thermal conductivity of air
obtained from reference 21, as follows:

— T ettt m——— — Bt

but
aT _ ~20T2° | dFs _OF . 4T _ -
—_— = 3 = 1; =— = FS 5 — = Mo
d.FZ FZ:O pOOVwcpz d_F F:O BT =0 d.}{
hence
- 4
_<k oL - k2 = 1"2“2) <2“T2 > Fg! (B1)
X/ max 3% |x=0 Cpb Voo
Let
e . oT
%
= 0% (B2)
20T Ft
Then from equation (B1)
kof Pl
L= 22— f;“i —-—FS (B3)
00 ' 00 pz t
For Ty >> 1
Fgt ~ 1
F ~ 1
Tt is found from reference 21 that
r~X2l2 o1 for Te < 15,0000 K (B4)
pOOVOOcpg
For Ty, <1
Fgt ~ 2
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or

ko
[~ —— (B35)
oc)V'OocpaL

The above parameter can be large for sufficiently small values of
shock detachment distance L where thermal conduction begins to be
important. This boundary could be considered along with the boundaries
already shown in figure 10, However, L, in most practical cases, will
not be less than 1072 cm., For such conditions the contribution of heat
conduction to the energy equation is negligible since T << 1, (It is
noted that these calculations do not consider the boundary layer where
viscous effects are large.)

For example:
1,000 atm I << 1 for L >> 107> cm

= 100 107*

To < 15,000° K Py

i

= 10 1072

-2

= 1 10
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Figure 4.- Fy as a function of Fj.
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Figure 1l.- Temperature distribution as a function of optical thickness.
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Figure 15.- Concluded.
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